When a bike or car heads towards a squirrel, the squirrel first dodges to one side and then runs away in the other direction. Birds fly directly away from the oncoming vehicle, so stay in front of the vehicle for a few seconds. These behaviours are presumably evolutionary adaptations to avoid predators. For example, the squirrel’s dodge probably misleads a predator to alter course in the direction of the dodge. The larger predator then has more difficulty than a small agile squirrel in switching direction to the opposite side of the dodge.
In avoiding vehicles, these escape patterns are counterproductive. A predator tries to collide with the prey, but a vehicle tries to avoid collision. A squirrel’s dodge confuses the driver or cyclist, who then tries to pass the animal on the opposite side of the initial feint, which is exactly the direction the animal ends up running in. The best way to avoid collision may be to just keep going in a straight line and let the animal dodge out of the way. A constant direction and speed is easy to predict, which lets the animal avoid being in the same place at the same time as the vehicle. Keeping one’s course and speed also avoids accident-prone sharp turns and sudden stopping.
If a predator was smart and knew about the dodging behaviour, then it would go opposite the initial dodge. But then the squirrel would benefit from not switching direction. In response to the squirrel just running in one direction, the predator should run in the direction of the squirrel’s initial movement, etc. This game only has a mixed strategy equilibrium where the squirrel randomises its direction and whether it dodges or not, and the predator randomises its response to the squirrel’s initial movement direction. Dodging takes more energy than just running to one side, so the dodge must have a benefit that outweighs the energy cost, which means that the predator must be less successful when the squirrel dodges. Some factor must make it difficult for the predator to swerve opposite the squirrel’s initial direction. For example, if most prey keep running in one direction instead of feinting, then the predator may be on average more successful when following the initial movement of the prey. The cognitive cost of distinguishing squirrels from other prey must be too large to develop a different strategy for chasing squirrels.
The same game describes dribbling in soccer to avoid a defender. It would be interesting to look at data on what proportion of the time the attacker feints to one side and then moves to the other, as opposed to just trying to pass around the defender in the initial movement direction. It is more difficult for both players to switch than to keep moving in one direction, but presumably the player with the ball finds it relatively more complicated than the defender. In this case, to keep the other player indifferent, each player only has to switch direction less than half of the time, but the defender relatively less frequently. If the attacker feints and the defender does not switch direction, then the defender looks clumsy and the attacker a good dribbler. Reputation concerns of soccer players (who are after all entertainers) may make them switch direction more often than a pure winning motive would dictate.
Similarly, soccer players may use flashy moves like scissor kicks more often than is optimal for winning, because the flashiness makes the player popular with fans.
Monthly Archives: November 2018
Saving ventilation cost by using the wind
Most large modern buildings have active ventilation built in, meaning that electric fans drive the air through the building. The airflow direction is usually fixed at construction time. However, if the wind happens to blow from the opposite direction to the ventilation flow, then the fans require extra energy to counter the wind. On the other hand, if the wind agrees with the airflow in the building, then the fans may not need to be run at all. To save electricity, a building could have a wind direction sensor (a weather vane) on the roof connected to a switch that reverses the ventilation fans, so that the fans always pump air in approximately the same direction as the wind. If the wind is strong enough, a wind speed sensor (a small windmill or windsock) on the roof could stop the ventilation fans altogether.
The tradeoff for this adaptive ventilation system is the initial fixed construction cost and the ongoing maintenance of the weather vane, windsock and controller of the fans. All the extra components of the system (relative to the current unidirectional ventilation) are cheap and robust, so the both the fixed cost and the maintenance should be negligible.
Current ventilation systems have differently shaped air inlets and outlets in the rooms, which suggests that the system requires a particular airflow direction. In this case, adaptive ventilation may be much more expensive than the current ones, because the ventilation shafts and air vents need to be doubled. To avoid the need to build twice as many shafts and vents, have just the air inlets and outlets of the whole building switch roles with the wind direction. The rest of the system can remain unidirectional when the valves from the building’s inlet and outlet to the rest of the system switch appropriately. The air inside the building can then move in the opposite direction of the wind some of the time. In this case, the electricity saving is only realised if the building is sufficiently airtight, which is the case for modern highrises that have unopenable windows. If the air is allowed to move through the building independently of the ventilation and the wind is opposite the airflow in the system, then the fans have to overcome the air pressure difference like in the current systems. This wastes electricity.
When to open windows to cool or warm a building
My uninsulated apartment building went from too cold to too hot in about a week, which is normal in Canberra. People have started to open the windows in the stairwell in addition to their apartment windows. The timing of the opening seems a bit misguided – people open the windows in the morning. During daytime, the air outside is warmer than the air inside the stairwell, but during the night the outside air is colder. To state the obvious: to cool down the building, open the windows for the night and close them for the day. Currently the opposite seems to happen, although I counter this trend by closing the windows in the morning when I notice them open.
In general, if you want the building cooler and the outside air is colder than the inside, then open the windows, but if the outside is warmer, then close them. If you want the building warmer and the outside air is colder than the inside, then close the windows, but if the outside is warmer, then open them. This could easily be automated with temperature sensors outside and inside the building connected to a thermostat and small electric motors opening and closing the windows. Such a system would save some of the heating and cooling costs of the building.
There may be non-temperature reasons to open and close the windows, for example to let smell out of the stairwell or to keep insects from coming in. The second reason is not relevant for my building, because all windows have bugscreens and the exterior doors have a gap an inch wide under them, which the insects can easily use to get in.
Tenancy Ending Checklist
Before the final inspection:
Give or receive valid notice of ending tenancy in writing, resolve any dispute about this.
Confirm any arrangements for agent/landlord to access property in writing.
Schedule final inspection.
Disconnect all utilities connected in your name.
Calculate rent payable until end of tenancy and pay that amount.
Cancel direct debit if necessary.
Clean property as needed when compared to incoming condition report.
Arrange for carpet cleaning if necessary.
Remove any additions, alterations you have done to property.
Print 1) bond refund form, 2) move-in condition report (keep a copy), 3) filled or blank move-out condition report, 4) key receipt to take to final inspection. 5) Put the move-in photos and video on a laptop/other device or print them to take to final inspection.
On the day of final inspection or move-out day:
Take photos of meters (date stamped).
Take photos/videos of condition of property and do your own condition report.
Bring the required forms, photos and video to the final inspection. Attend final inspection.
Return keys and get a receipt or sign a photocopy.
Resolve any issues with condition of property.
Sign bond refund form and lodge with Office of Rental Bonds (you or the agent can do this).