The paper by Qiao et al. (2020) in Science Advances shows that unicellular algae injected near a hypoxic tumour photosynthesise oxygen in the body in response to infrared light with wavelength 660nm that penetrates >4mm into tissues. The oxygen saturation of the tumour rises from 6.2% to 30% in 2 hours after the algae receive a 5-minute laser exposure. The oxygen sensitises the tumour to radiation therapy. No side effects were found from the algae in this or previous research. The performance of the algae stayed the same when these were coated with red blood cell membranes to delay their clearance from the body.
Another application of algae that can produce oxygen in the organism is doping in sports. The algae can be tattooed under skin that is exposed to light containing enough of the wavelengths which the algae use and which can penetrate under the skin. For example, long-distance runners outdoors in warm weather have most of their skin exposed to sunlight, thus have a large surface area suitable for algal oxygen production. The additional oxygen from photosynthesis improves athletic performance. The only question is whether the oxygen generation is quantitatively fast enough to make a difference. In elite sports, every little advantage counts, so athletes are probably willing to use algae tattoos.
The algae are not dangerous even in deep blood vessels and tissues. Eventually the organism clears the algae, but the clearance of foreign particles is slower in the skin than in deep tissues, as evidenced by the persistence of ordinary tattoos. So the algae will last for a daylong competition.
Patients with breathing problems, for example with coronavirus-induced lung inflammation, may also benefit from algae tattooed on a large area of skin which is then illuminated with 660nm light. Such oxygen supplementation reduces the need for mechanical ventilation. Again, the question is the amount of oxygen from a whole-body algal tattoo.