Borjas ja Doran kirjutavad QJEs, kuidas Nõukogude Liidu lagunemise järgne matemaatikute sissevool USAsse mõjutas sealsete matemaatikute karjääri- ja avaldamisvõimalusi. Sissevoolu järgselt jäi rohkem matemaatika doktorikraadi saanuid töötuks ja lahkus teadusest, USA matemaatikud liikusid madalama tasemega ülikoolidesse ja avaldasid vähem artikleid.
Seda kõike on lihtne ennustada nõudluse ja pakkumise mudelist. Matemaatikute pakkumine suurenes, aga nõudlus jäi samaks, sest uusi töökohti ega ilmselt ka teadusajakirju ei loodud. Sama arv matemaatikuid täitis sama arvu kohti, aga need olid erinevad inimesed. Sisserännanud matemaatikud said töökohad ülikoolides, kust siis mõned seal varem olnud teadlased lahkusid nõrgematesse ülikoolidesse, kust omakorda osa varasemaid olijaid pidi lahkuma jne. Ülikoolide pingerea allotsa jõudes pidid sealt välja tõrjutud matemaatikud teadusest lahkuma.
Borjas ja Doran väidavad, et USA matemaatikute tootlikkus langes sisserände tagajärgel, aga sisserändajate teadustöö kompenseeris selle üsna täpselt. Kui autorid arvavad, et avaldatud teadusartiklite hulk (mis on neil tootlikkuse mõõduks) mõõdab teadlase absoluutset tootlikkust, siis teevad nad vea, jättes arvestamata samaks jäänud avaldamisvõimaluste arvu. Kui suurem arv teadlasi konkureerib sama arvu artiklikohtade pärast ajakirjades, siis loomulikult varasemate olijate artiklihulga langus võrdub uute tulijate artiklihulgaga. See ei tähenda kohalike teadlaste tootlikkuse langust, vaid keskmise artikli kvaliteedi tõusu. Fikseeritud artiklikohtade arvu korral mõõdab avaldatud artiklite hulk inimese suhtelist tootlikkust võrdluses teiste sama valdkonna teadlastega.
Kui ajakirjade toimetajad valivad neile saadetud artiklitest n parimat, siis sisse rännanud matemaatikud suudavad kohalike artikleid ajakirjadest välja tõrjuda ainult parema kvaliteedi abil. Kui uued tulijad avaldavad m artiklit, siis nende m artikli minimaalne kvaliteet on suurem või võrdne välja tõrjutud artiklitest parimaga. Kvaliteedi minimaalse tõusu suuruse saab leida, eeldades et immigrantide artiklid asendavad täpselt kohalike kõige viletsamad artiklid. Maksimaalse tõusu suurust lihtsalt avaldamisandmete põhjal leida ei saa, sest kui sisserändajate m artiklit on paremad kui kõik kohalike omad, siis võivad nad olla kuitahes palju paremad. Asendades m kohalike tippartiklit, sunnitakse asendatud artikleid asetuma m järgmisele kohale, m järgmist omakorda asendavad neist allpool olevaid jne. Ajakirjadest välja jäävad ikka kõige viletsamad, aga juurdetulijad võivad olla lõpmatult paremad kui algne hulk.
Muidugi pole ajakirjade toimetajad kõiketeadjad ega suuda alati valida parimaid artikleid, aga kui nad keskmiselt teevad õige otsuse (valivad parema artikli suurema tõenäosusega kui halvema), siis eelnev argument kehtib, ainult muutuste suurus väheneb (kvaliteet tõuseb vähem).