Sildiarhiiv: tehnoloogia

Soe toit on ainult harjumus ja traditsioon

Toidu kuumutamise ja muu töötluse eesmärgiks ajalooliselt oli selle näritavaks muutmine, toitainete parem kättesaadavus ja haigustekitajate tapmine. Tänapäeval saab toidu toorainet söödavaks töödelda ja säilitada ka muul moel kui vahetult enne söömist kuumutades. Haigustekitajaid saab hävitada keemiliselt (säilitusained, muuhulgas happed, alused, alkohol, sool, suhkur) ja füüsikaliselt (kuumus, rõhk, kuivatus, külmutamine parasiitide vastu), toitu seejärel hermeetiliselt pakendades. Tekstuuri näritavaks ja neelatavaks muutmiseks piisab pulbriks jahvatamisest. Seetõttu pole vaja kodus keeta-küpsetada.

Meeldivuse seisukohast on soe toit ja kuum või külm jook lapsepõlvest saadud harjumus. Maailma vaeseimates piirkondades kasvanud inimestele külm jook ei meeldi, kuna külmutusseadete puudumisel pole nad harjunud seda tarbima. Harjumuslikkust näitab ka samas olukorras vastandlike temperatuuridega vedelike joomine eri kultuurides – Türgi ja Hiina kuum tee, USA jääkuubikuid täis suhkrujoogitops (sealhulgas jäätee) sarnases subtroopikas või kõrbes (Florida, Arizona, Xiamen, Guangzhou). Keemiline koostis võib jookidel sarnane olla – Türgi õunatee on samuti suhkrune. Kuuma tee pakkumisele palaval ajal reageeriks ameeriklane negatiivselt ja jääjoogi kurku kallamine paneb kuuma joogiga harjunutel pea valutama.

Valmistamise seisukohast oleks kuumutamata söödav toit keskkonnasõbralikum ja odavam, kuna tootjal on lihtne suurtes kogustes eelkuumutada ja jahvatada, hermeetiline pakend maksab tänapäeval tühiselt vähe, samas kaob kodudes vajadus pliidi ja pottide järele ning väheneb elektrikulu. Aja kokkuhoid on samuti märkimisväärne, sest toidu valmistamiseks kulub suurusjärgus tund päevas.

Kriisiolukorras ja välitingimustes (matkal, sõjas) on loomulikult vaja kuumutamata söödavat kaua säilivat toitu, milleks tootmises läbi kuumutatud, pulbriks jahvatatud ja kuivatatud toiduained hästi sobivad. Eelis infrapunakaamerate ajastul on ka, et vaenlane ei avasta üksust keetmise kuumuse järgi. Ka vanasti oli lõkkesuits reetlik signaal.

Eeldame, et inimene tarbib päevas 4 kg vett ja toitu. Selle soojendamiseks nulli lähedalt kehatemperatuurini kulub 4 *1 *36 =144 kcal, mis on umbes 1/20 täiskasvanu päevasest energiavajadusest kehalise töö korral. Sellise kalorikoguse saab 144 /9 =16 g rasvast. Soojendamaks eelnevalt toidu ja joogi kehatemperatuurini, peab kaasas kandma kütust, priimust, potti ja kulutama aega. Puhtalt kaalu põhjal on matkata lihtsam kohe söödava toidu (pähklivõi, kondenspiim, köögiviljapulbrid, valgupulbrid, maisihelbed, konservid) pisut suurema kogusega, mitte väiksemat kogust tavatoitu ise keeta. Ilmselt seetõttu on tekkinud matkaliik „priimuseta” (no-cook hiking, stoveless backpacking).

Alla nullise ilmaga peab külmunud toitu ja jooki ikkagi sulatama, et seda oleks lihtsam kõrist alla saada ja et see suu limaskesti ei jäätaks. Priimust ja muud keeduvarustust pole otseselt vaja, sest vee peab ainult vedelasse olekusse saama, mida võimaldab keha lähedal kandmine, näiteks kõhukotis riiete all. Seljakotis vastu selga pole soovitatav külmetushaiguse ohu tõttu. Meeldivamaks söömiskogemuseks võib toidu ka kehatemperatuurini tõusta lasta.

Alajahtunud inimese soojendamiseks on väline soojusallikas muidugi kasulik, aga priimus on selleks üsna ebapraktiline, sest tekitab liiga suurt kuumust, nii et seda ei saa vastu rindkeret hoida. Kuuma joogi kurkukallamine on plagisevate hammastega või külmast krampis (neelamis)lihastega inimesele ka raske ja võib kõrvetada. Niinimetatud kosmosetekk (alumiiniumkattega isoleeriv palakas) ja kehasoojusega soojendamine on kiiremini rakendatavad ja kaasaskantavad. Pääste tuleks alajahtunule kutsuda nagunii.

Kui olude sunnil tuleb külmas vees olla, näiteks soises kaevikus või veekogu läbides, siis ei suuda keha ka pidevalt rasva ja suhkrut süües nii palju soojust toota kui naha kaudu kaotab, sest seedimiskiirus on piiratud. Isegi mittelõdiseva soojustootmise (nonshivering thermogenesis) geeniga burjaatidel pole seedeefektiivsus piisavalt kõrge. Kui sellisel juhul on toit kehast soojem, siis aitab see pikendada alajahtumiseni vastupidamise aega. Ajapikendus pole siiski eriti suur, sest keha ei suuda sellist vedelikukogust sisse mahutada, mida oleks soojuskao tasakaalustamiseks vaja. Näiteks nullilähedases vees tekib alajahtumine paari minutiga, ehk 80 kg inimene kaotab temperatuuri umbes ühe kraadi minutis. Kui joodav vesi oleks 72 kraadi (sama palju kehatemperatuurist kõrgem kui ümbritsev vesi madalam, kõrvetab kurku), siis peaks seda 80 kg *K /min soojuskao tasakaalustamiseks tarbima 80 /36 =2,22 liitrit minutis.

Telefoni laadija- ja kõrvaklapiaugu tööle saamine

Nutitelefoniga oli probleem, et laadija ots ei püsinud telefonis selle jaoks mõeldud augus. Seetõttu laadija ka ei laadinud. Proovisin laadijaotsa kleeplindiga laadimise ajaks telefoni külge kinnitada. Ostsin mitu erinevat laadimiskaablit ja kõigiga oli sama probleem. Vaatasin internetist, et vaja telefonil laadimisauk tolmust puhastada. Puhastasin mitu korda õrnalt traadiotsaga, puhusin sisse, imesin tolmuimejaga, aga miski ei aidanud. Lõpuks võtsin julguse kokku ja kraapisin nõelaga hästi tugevasti, surudes nõela laadimisaugu põhja ja külgede vastu. Mu loogika oli, et kui midagi lähebki katki, siis pole sellest erilist lisakahju, sest nagunii on telefon laadimata kasutuskõlbmatu. Selle tugeva kraapimisega tuli laadimisaugust mitu tolmutroppi välja. Täitsa uskumatu kui palju tolmu sinna mahtus. Taskus kandes oli ilmselt laadimisauku riidepudi sattunud ja laadijaotsaga olin iga päev tolmu augu põhja kokku pressinud. Pärast sügavpuhastamist läks laadija ilusti auku ja püsis seal, laadides ilusti. See oli mitu kuud tagasi.

Kõrvaklappide auk mu telefonil ka ei töötanud kohe kasutatuna ostmisest peale. Arvasin, et kasutatud telefoni viga. Kuna ma telefoniga peaaegu kunagi kõrvaklappe ei vajanud, siis leppisin selle puudujäägiga. Nüüd tuli mõte, et äkki kõrvaklappide auk on ka tolmu täis. Kraapisin siis terasest kirjaklambri otsaga kõvasti põhja ja külgi ja tuligi mitu troppi tolmu välja. Nüüd läheb kõrvaklapijuhe auku lõpuni sisse ja kõrvaklapid töötavad. Huvitav, et ma varem selle lahenduse peale ei tulnud, näiteks telefoni laadimisauku puhastades.

Kaabli panek metsa maapinnale

Maapiirkondades võib olla odavam internetikaabel helikopterilt üle puulatvade laotada või ATVga läbi metsa vedada seda maapinnale jättes kui kraavi kaevata. Kui kaabel katki läheb, saab samamoodi maapinnale uue paigaldada. Plastümbrisega kaabel on mittemehaanilistele kahjustustele (vesi, päike, temperatuurikõikumised, mullamikroobid) üsna vastupidav. Mehaanilisi vigastajaid on metsas hõredalt: sõralised võivad peale astuda või oks kukkuda. Närilistele ei tohiks plastümbris huvi pakkuda, aga igaks juhuks võib selle kibeda keskkonnale ohutu ainega üle värvida. Peaks vältima kaabli läbi lohkude paigaldamist, sest jäätuv vesi võib kaabli katki pigistada.

Kilomeeter kahekiulist fiiberoptilist õue sobivat kaablit maksab hulgi ostes 300 eurot. Sarnase hinnaga 300 Eur/km on koaksiaalne vaskkaabel. Käsitsi kraavikaevamine maksab 15 m pikkuse 1,6 m sügavuse eest 350-900 eurot, 40 m pikkuse 0,7 m sügavuse eest 260-550 eurot. Kaevetraktori töötunni hind on 40-50 eurot. Ekskavaator kaevab 100 m^3 umbes nelja tunniga, teises allikas umbes 250 m^3 päevas, aga metsas on sellega keeruline ligi pääseda, juured aeglustavad kaevamist ja läbikaevatud juurtega puud kukuvad teiste peale, vähendades metsa väärtust. Hinnanguliselt võrdub 4 m kraavi 1 m^3 pinnasega, nii et ekskavaator kaevab 800 m päevas, mis maksab 400 eurot. Kui diskontomäär on null ja kraavi matmine pikendab kaabli eluea rohkem kui 2,33 kordseks, siis on kraavil mõtet, muidu intressivabas majandusolukorras mitte. Arvutus: iga 2,33 ajaühiku tagant 300 Eur/km kaabel 400 Eur/km kraavis, ehk 700/2,33 Eur/km/ajaühik, vs iga 1 ajaühiku tagant 300 Eur/km kaabel maapinnal ehk 300/1 Eur/km/ajaühik.

Tegelik projekti diskontomäär peaks arvestama ka kaablipõhise teabeedastuse asendumist tulevikus muu sidepidamisviisiga (kaabli moraalset vananemist). Diskonteerides näiteks 10% aastas, on iga-aastane rahavoog R väärt 10 korda rohkem kui ühekordne rahasumma R. Ehk kui algne investeering korrutada kümnega, peaks vastupidavus lõpmatuks muutuma, et suurem investeering ära tasuks. Kui algne investeering korrutada 2,33ga, siis peab kaabel mattes vastu pidama 2,52 korda kauem kui maapinnal, et matmine ära tasuks.

Arvutus: Oletame, et kraav pikendab kaabli eluiga f kordseks. Diskontotegur on d>0, d<1. Kogukulu on kraaviga väiksem siis kui Sum_{i=0}^{\infty}(2,33*d^(f*i))<Sum_{i=0}^{\infty}(1*d^i) ehk kui 2,33/(1-d^f)<1/(1-d) ehk kui 2,33-2,33*d<1-d^f ehk kui d^f<2,33*d-1,33 kui f>ln(2,33*d-1,33)/ln(d).

Diskontotegur d aastas on üldiselt suurem kui 1,33/2,33, nii et ln(2,33*d-1,33)/ln(d)>0 on reaalarv. Kui d=0.9, siis ln(2,33*d-1,33)/ln(d) on umbes 2,52.

Kui kraavi saab ekskavaatoriga kaevata, siis tundub kogukulu väiksem kaablit mattes, sest selle eluiga pikeneb ilmselt rohkem kui 2,52 korda. Kui aga peaks kaevama käsitsi, siis see maksaks suurusjärgus 10000 Eur/km, metsas isegi rohkem. Sel juhul on kogukulu kaablit maapinnale paigaldades vähemalt kümme korda väiksem kui mattes, isegi kui maetud kaabel lõpmatult kestaks ja vaid moraalselt vananeks.

Fiiberoptiline kaabel peaks kestma 40 aastat, teise allika kohaselt maetuna 28 aastat. Valguskaablit on kaua paigaldatud elektripostidele, et vältida kõige tõenäolisemat kaablikahju põhjust, milleks on kaevetööd. Kui kaabel maapinnal 10-15 aastat vastu peab, siis on mõttekam see maha vedelema jätta kui kraavi matta. Postidele paigaldamisel on probleemiks lume ja jää raskus, mis võib kaabli katki tõmmata, aga maapinnal tõmmet eriti kartma ei pea, ainult läbi lombi minekul jäätumise külgsurvet.

Puu aastarõngaste loendamine masinnägemisega

Mitmel teadusalal kasutatakse puude aastaringide andmeid. Näiteks ajaloolise metsakasvu ja keskkonnatingimuste (temperatuur, sademed) mõõtmiseks. Praegustes maailmatasemel uuringutes kasutatakse paarikümnest kohast maailmas käsitsi loendatud aastarõngaid. Seda andmehulka saaks väikese kuluga oluliselt suurendada, loendades raie käigus masinnägemisega ringe kõigilt kändudelt. Tuleb vaid igast kännust foto teha ja andmebaasi üles laadida. Metsalangetajad võivad seda teha oma telefoniga, aga lihtsam oleks, kui harvesteri või mootorsae küljes olev kaamera automaatselt kändu pildistab ja wifi piirkonda jõudes pildid üles laadib. Kui metsas andmeside on, võib ka kohe pildistamise järgselt laadida.

Praktilisest vaatepunktist oleks lihtsaim harvesteri käpa külge kaamera monteerida, mis aktiveerub käpa liigutamisel või saeheli või -vibratsiooni peale, leiab automaatselt maastikult värske kännu (nagu näotuvastus nutitelefonides), fokusseerib, teeb foto ja laadib üles kas wifi levialasse jõudes või andmeside kaudu. Probleemiks on, et kaamera saab poriseks, läheb kuhugi vastu ja katki või teeb vihm selle uduseks. Kaamera mittetöötamise saaks automaatselt tuvastada (kui pilti ei näita, siis on midagi viga) ja sellest teavitada näiteks harvesteri juhti, et ta läätse puhtaks pühiks või kaamera parandusse viiks.

Kaamera saaks ka mootorsaega töötaja kiivri külge monteerida ja samuti automaatselt aktiveerida saehääle lõppemise või puu pikaliprantsatamise ragina peale. Idee on sarnane politseinike kehakaamera või püstolikaameraga, mis tulirelvalasu peale aktiveerub.

Eesti Digiregistratuuri järgi kohaletuleku ennustamine

Raviasutuse broneerimis- ja vastuvõtusüsteem võiks Digiregistratuuri automaatselt kirja panna, kas patsient tuli kokkulepitud ajal kohale ja kas hilines. Nende andmete põhjal saaks ennustada iga inimese kohaletulekut, mis võimaldab raviasutusel aega paremini planeerida. Esialgu kui andmeid vähe, oleks ennustus inimrühmade kohta. Näiteks, et keskmine patsient tuleb tõenäosusega x, pensioniealised tõenäosusega y, naised tõenäosusega z.

Ajaplaneerimise osas võib panna väiksema tõenäosusega saabuvad patsiendid päeva lõppu või lõunaajale, nii et nende mitteilmumise korral saavad meditsiinitöötajad varem koju minna või pikema lõuna. Samuti võib madala tõenäosusega kohale tulevaid patsiente rohkem ühele päevale panna (väiksemate ajavahedega), sest tõenäosus, et vähemalt üks neist ei tule, on kokkuvõttes suur, ja selle arvelt pikeneb teiste jaoks saada olev aeg.

Pidevalt hilinevale patsiendile võib pakkuda tegelikult vaba olevast varasemat aega, et neutraliseerida tema hilinemine. Näiteks kui inimene üldiselt 10 minutit hilineb ja arst on vaba kell 11, siis pakkuda sellele inimesele aega 10:50, muidugi talle teatamata, et arst tegelikult kell 11 vabaneb. See inimene tõenäoliselt hilineb nagu alati ja jõuabki kella 11ks nagu arstile kõige paremini sobib. Arstil on siis vähem tühja ootamist ja hilisemad patsiendid saab loodetavasti õigel ajal vastu võtta, mitte hilinejale kuluva aja võrra hiljem. Kokku säästab broneeringute kohandamine patsientide hilinemiskäitumisega paljude inimeste aega.

Sama efektiivsustõus on võimalik kõigis järjekorra- ja broneerimissüsteemides. Lisaks parandab mitme valdkonna hilinemisandmete ühendamine süsteemi ennustusvõimet, sest inimene, kes hilineb tihti üht tüüpi kokkusaamistele, hilineb tõenäoliselt ka teistele. Kes ei pea kinni arstiaegadest, see ilmselt ka töökoosolekutest ja sõpradega kohtumistest, võib kasutamata jätta üritusepileti jne. Kui ta esimest korda arstiaja kinni paneb, siis pole varasemaid arstivisiite, mille põhjal ta hilinemiskäitumist ennustada, küll aga võib olla palju muid sündmusi, mis on tema kohta informatiivsed.

Pole vaja keskset broneeringusüsteemi ja andmebaasi inimeste hilinemise kohta – piisab sotsiaalvõrgustikust ja telefonide lähedusandmetest, mida kasutab näiteks bluetoothi-põhine Hoia äpp. Sõprade telefonid registreerivad, millal tuttava telefon nende lähedusse saabus, võrdlevad seda kalendriäpis kokku lepitud kohtumisajaga ja salvestavad automaatselt, kas see tuttav tuli kokkulepitud kohtumisele ja millise hilinemisega. Igaüks saab enda sõprade kohta salvestatud andmete põhjal nende saabumise tõenäosust ja aega ennustada. See aitab üritusi planeerida ja inimese üldist usaldusväärsust hinnata. Kes tihti hilineb, võib ka muid lubadusi harvem pidada – ei tasu ehk talle raha laenata.

Eesti Digiloo põhjal haiguste ennustamine

Masinõppega saaks Digiloo põhjal ennustada patsiendi haigusi, vaadates samade demograafiliste näitajatega inimesi, kel varem oli sarnase algusega haiguslugu Digiloos ja kuidas see haiguslugu jätkus. Sellega ei pea tegelema riigiametnikud ega eestlased – kui anda ligipääs, siis rahvusvahelised teadlased hea meelega uuriksid Digiloo andmeid tasuta ja saaksid endale sellega publikatsioone. Tulemuste põhjal võib rahvatervist ennustada, inimestele hoiatusi ja soovitusi jagada, neid uuringutele kutsuda ja ennetavat ravi määrata.

Andmetele endile ei pea isegi ligipääsu andma – teadlastelt saadud statistikaprogrammi võib lihtsalt andmete peal jooksutada ja ainult tulemused teadlastele väljastada. Ise andmeid nägemata saab neid ometi uurida – selle valdkonna nimi on turvaline mitmepoolne arvutus (secure multiparty computation). Uurimise lihtsustamiseks tuleks avaldada andmete struktuur: kui mitu rida ja veergu, mis formaadis igas reas ja veerus olev info on (tekst, number, kuupäev). Piisab, kui laadida andmed tabelarvutusprogrammi ja kustutada tabelite sisu, jättes vaid ridade ja veergude pealkirjad. Programm peab lahtrite formaadi ise meeles, nii et selle tühjade tabelitega faili põhjal saab uurija andmete formaadi teada.

Kasutaja jaoks on Digilugu praegu üsna ebamugav ja allalaadimisvaenulik. Eraldi peab igal epikriisil klõpsama, ootama, kuni see avaneb, avama veel peidetud väljad klõpsates „Vaata kirjeldust” ja alles siis saab leheküljel laiali olevatest tekstidest ehk midagi välja lugeda. Saatekirjad ja nende vastused on eraldi. Pildimaterjali (röntgeni, ultraheli, silmapildistamise tulemusi) enamik asutusi üles ei laadi. Epikriisid ja saatekirjad on ruudustikku paigutatud, mitte ajalises järjestuses.

Enamiku inimeste kohta on Digiloos nii vähe materjali, et selle võiks kõik ühel lehel ajalises järjestuses tekstina esitada. Lisaks võiks selle teha tabelarvutusprogrammi tabelina allalaaditavaks, mis võimaldaks inimestel ühendada terviseandmed näiteks oma toitumis- ja trennipäevikuga ja nende vahel statistilisi seoseid leida.

Kui mingi kategooria, nt „Teatised” all ühtegi dokumenti pole, siis võiks selle halliks muuta, et kasutaja ei peaks teavet otsides asjatult klõpsima, ootama ja alles siis nägema, et „Päringu tingimustele vastavaid dokumente ei leitud ”.

Sisselogimisel võiks Digilugu avalehe asemel näidata viimaseid lisatud andmeid, näiteks uuringu tulemust. Tõenäoliselt logib kasutaja sisse viimaste andmete vaatamiseks, nii et nende näitamine kohe alguses säästab aega.

Kätepesu motiveerimine võistlusega

Ultraviolettvalguse all helendavat pulbrit puistata pisut peldikupoti prill-lauale või peldikupaberile, pärast vaadata, kelle käed helendavad. See näitab, kes ei pesnud korralikult. Üks võistleja püüab teiste käed helendama panna mingi ebahügieenilise koha peale pulbrit või muud markeerivat ainet (Glo Germ, Shomer-Tec, Glitterbug) pannes, teised seda vältida. Arvutiklaviatuur on kontoris räpaseim koht ja seda on lihtne ja ohutu pisikese pulbrikogusega märkida.

Võistluse huvitavamaks muutmiseks võib jutustada taustaloo palgamõrtsukast, kes püüab teatud ohvrit mürgitada, aga kel on piiratud juurdepääs. Saades ligi vaid prügikastidele või kempsule, näiteks koristajat teeseldes, peab palgamõrtsukas kaudselt teiste inimeste käte kaudu mürgi ohvrini toimetama.

Sarnase võistlusega võib soodustada ka muid hügieenitegevusi, näiteks aevastamisel suu ja nina taskurätiga (või küünarnuki siseküljega) katmine. Vaja vaid signaali valest tegevusest. Helendava aine ninna toppimine pole parim mõte, aga võib-olla saab aevastuse piisku kätelt ja ruumist muul viisil tuvastada.

Maskikandmise motiveerimiseks võib võistelda enda näo varjamises ja teiste nägude maskita pildistamises. Taustalooks näiteks spioonid, kes ei taha, et neid tuvastataks ja vastuluure. Või kuulsused, kes tahavad inkognito püsida ja kollane ajakirjandus, kes proovib neid piinlikus asukohas või olukorras pildile saada. Vägivaldne maski maharebimine peab muidugi võistlusreeglitega keelatud olema, piisavalt suure karistuse ähvardusel. Muidu võivad kõrvatagused nöörid maski tõmbamisel sisse lõikuda.

Siseruumi valgustuse asendamine pealambiga

Üksi siseruumis olev inimene saab elektrit säästa, kasutades pealampi laevalgustuse asemel. Tänapäevased LED lambid on piisavalt kerged, eredad ja kauakestva akuga, et neid saaks terve päeva kasutada. Kui koroonaviiruse tõttu nagunii visiiri või maski kantakse, siis pole lisavarustus pea küljes eriline lisaebamugavus. Samuti kui peab kandma kiivrit või on ruum piisavalt külm mütsi motiveerimiseks (ehitusjärgus, lao- või tootmishoone).

Pealamp näitab valgust sinna, kus vaja, mitte kogu ruumi ebavajalikesse nurkadesse nagu laevalgustus. Kuna kaasaskantav valgusti on lähemal valgustust vajavatele objektidele, ei pea see nii võimas olema kui laelamp. Idee on sarnane tänavavalgustuse asendamisele jalanõude küljes olevate isiklike lampidega.

Mitme inimesega ruumis on probleemiks teiste pimestamine pea kõrguselt tuleva horisontaalse valgusvihuga. See probleem on ülalt langeval laevalgusel väiksem. Kui öönägemisseadmed piisavalt odavaks ja mugavaks muutuvad, siis saab kogu tehisvalgustuse isiklike infrapunaprillidega asendada. Need ei pimesta teisi ja neid saab kasutada nii siseruumis kui õues. Kui integreerida öönägemisseadmed virtuaalreaalsusprillidega, siis ei pea kulutama ressursse siseviimistlusele – igaüks saab oma prillides seinavärvi seadistada endale sobivaks. Samuti ei pea ühtegi asja värvima ilu pärast, vaid ainult ilmastikukaitseks vm praktiliseks eesmärgiks.

Tänavavalgustuse asendamine isiklike lampidega

Isiklikud laternad (pealambid või vöö-, kinganina- jm valgustid) laternapostide asemel hoiaksid oluliselt raha ja energiat kokku (arvutused allpool) ning vähendaksid valgusreostust. Mootorsõidukitel on niikuinii laternad küljes, millest peab piisama valgustamata maanteedel sõitmiseks, seega linnavalgustuse puudumine ei tohiks neil liiklemist takistada. Jalgratastel on samuti pimedas esituli kohustuslik, kuigi selle nõude täitmist ei kontrollita. Kümneeurone jalgrattatuli on minu kogemuse põhjal piisavalt ere, et öösel valgustamata metsavaheteel sõita.

Tänapäevane leed-peavalgusti mitu tundi kestva akuga kaalub paarsada grammi, nii et ka lapsed suudavad seda kanda. Isiklik latern maksab internetist ühekaupa ostes alla 10 euro (hulgi on veel odavam) ja kestab kauem kui posti otsas olev lamp. Akut saab pistikust laadida ja see peab vastu vähemalt mitusada laadimistsüklit. Isikliku valgustiga paraneb ohutus, sest jalakäija on laternat kandes ka muu valgustuseta paremini nähtav kui helkuriga tänavavalgustuse all.

Kui tänavalambid inimesele silma paistavad, siis mujale vaadates tundub ka hämarus pime, sest silm kohandub eredusega. Samuti paistab valgustamata tänav peale valgustatud kohta pime, mis võib isikliku lambi esmakordse kasutaja viia valearvamusele, et postilaternad on paremad. Kui inimene näeks vaid enda laterna tagasipeegelduvat valgust, mitte tänavalambi otsekiirgust, siis ei tunduks ereduse erinevus valgustamata ja valgustatud tänava vahel nii suur.

Tegelik nähtavus võib olla parem nõrgema, kuid ühtlasema valgusetasemega. Olen kogenud seda öösel ilma kunstvalgusallikata metsarajal kõndides – täiskuu ajal on juurikad peaaegu sama hästi näha kui päeval. Komistamisoht on vaid seal, kus puuoksad üle raja varje heidavad (kontrast petab silma ja varjutriip tundub juurena või vastupidi). Noorkuu ajal ainult tähevalgusega on metsarada minu silma jaoks siiski liiga pime, kuid kruusatee siiski muretult kõnnitav.

Praegu on lambi kaasaskandmine erandlik, nii et inimesed unustaksid tihti laternat kaasa võtta, aga kui valgustikandmine oleks sama tavaline kui välisjalanõude jalgapanek, siis unustamisprobleem väheneks. Lambid saab ka jalatsitesse või mütsi sisse ehitada ja programmeerida liikumise ja pimeduse korral tööle lülituma.

Maksuraha kokkuhoid on piisavalt suur, et kui tänavavalgustuse ühe aasta hoolduse asemel see summa elanikele kätte jätta, siis saaksid nad kõik endale isikliku leed lambi osta. Tallinna 2020 eelarve kohaselt kulub tänavavalgustuse hooldusele üle seitsme miljoni euro aastas, pluss poolteist miljonit investeeringuteks. Jagades elanike arvuga saame vähemalt neliteist eurot inimese kohta aastas. Seega kaks isiklikku laternat igale elanikule tasuksid end ühe aastaga ainuüksi tänavavalgustuse hoolduskulude kokkuhoiust. Sarnane tasuvus on ka väiksemates kohtades, näiteks Rae valla 16000 elaniku kohta on 2020. aasta valgustuse hoolduse eelarve 191800. Maapiirkondades on avalikud hüvised elaniku kohta veel kallimad, sest inimesi on vähem.

Teine arvutus on lampide arvu põhjal elanike kohta. Tartus oli 2014. aastal 11547 tänavalaternat, seega umbes üks kümne elaniku kohta. Üks tänavavalgusti maksab kindlasti rohkem kui kümme kaasaskantavat leed pealampi. Lisaks nõuab välisvalgustus muud taristut: Tartus ühendas 2014. aastal laternaid 227 km õhuelektrikaableid ja 126 km maa-aluseid elektrikaableid; lampe juhiti 151 juhtkilbist.

Autokooli sõiduõpe simulaatoriga

Simulaatoriga autojuhtimisoskuse õppimine hoiab kokku bensiini ja sellest väärtuslikumat sõiduõpetaja aega. Erinevalt lennukist pole vaja autosimulaatori istet liikuma panna, sest „tagumikutunde” abil kallutamise, keeramise ja kiirenduse tuvastamine on autosõidul väheinformatiivne. Bussijuhil on vaja osata sujuvalt sõita, et seisvad reisijad pikali ei kukuks.

Simulaatori eelis on ka, et saab keerulised ristmikud ja ohtlikud olukorrad palju kordi läbi harjutada, kulutamata aega sirgel teel sõidule. Harjutamine oleks ka õppijale sobivamal ajal, kuna ei pea koordineerima õpetajaga. Tihedam ja keerulisele keskenduvam õppesõit vähendab unustamist. Nii võib sama harjutatud tundide arvuga parema tulemuse saavutada kui tavalise sõiduõppega. Simulaatoriga saab sama raha eest rohkem tunde sõita. Ühiskondlikust seisukohast on oluline võrrelda just antud raha eest saadavat oskust, arvestades õpetaja ja õpilase aja nende töötunni hinna alusel rahaks.

Kindlasti oleks suur osa autokoole ja sõiduõpetajaid simulaatori vastu, sest see vähendaks nõudlust nende teenuse järele. Ilmselt esitaksid nad tehnoloogiavastaste mittemidagiütleva tavaargumendi „see pole ikka sama”, lisaks õiguslikele takistustele ja väitele, et oskused on simulaatoriga halvemad. Viimast saab muidugi kontrollida, jagades inimesed juhuslikult simulaatoriõppe ja traditsioonilise õppesõiduauto vahel ja võrreldes omandatud oskusi.